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Abstract. In this study, we empirically assess the contributions of inventors and firms for
innovation using a 37-year panel of U.S. patenting activity. We estimate that inventors’
human capital is 5–10 times more important than firm capabilities for explaining the
variance in inventor output. We then examine matching between inventors and firms and
find highly talented inventors are attracted to firms that (i) have weak firm-specific in-
vention capabilities and (ii) employ other talented inventors. A theoretical model that
incorporates worker preferences for inventive output rationalizes our empirical findings
of negative assortative matching between inventors and firms and positive assortative
matching among inventors.
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1. Introduction
Innovation is a key driver of firms’ productivity and
competitive advantage (Griliches 1984, Jaffe 1986,
Kogan et al. 2017). Yet, we know little about the
sources of innovation at firms. In particular, we do not
know to what extent two key inputs to innovation—
human capital and firm-specific capabilities—influence
the inventiveness of inventors. Aspects of modern
innovation, such as the deep complexity of new prod-
ucts and the burden of knowledge required to invent
them, suggest organizational capital, embedded in
firms’ structure, processes, and culture, are essential
for innovation (Cohen et al. 2000, Jones 2009). At the
same time, the tacit nature of breakthrough knowl-
edge and the well-documented achievements of he-
roic inventors suggest human capital is crucial for
innovation (Arora 1995, Zucker et al. 2002, Agarwal
et al. 2004, Fallick et al. 2006, Singh and Agrawal 2011,
Palomeras and Melero 2010, Schilling 2018).

How much do the human capital of inventors and
the innovation capabilities of firms contribute to in-
ventors’ productivity? Are inventors who appear
highly productive matched with firms that have the
best innovation capabilities or is their secret sauce
embedded in their own human capital? In this paper,
we empirically and theoretically study these ques-
tions. Indeed, if the ability to invent rests with firm-
specific structure, culture, and routines that are hard
to transfer across organizational boundaries, then
inventors may be substitutable, and firms should

develop capabilities that enhance innovation. If, on
the other hand, human capital is critical for innova-
tion, then firms’ innovativeness will depend on their
ability to screen, attract, and retain talented workers.
Thus, shedding light on two key inputs to innovation—
human capital and firm capabilities—and the rela-
tionship between the inputs has direct implications
for managers and for theories of innovation and com-
petitive advantage.
Disentangling the contributions to inventor pro-

ductivity of human capital and firm capabilities poses
two main challenges. First, firms deploy a combina-
tion of human capital and firm capabilities to tasks,
and the two factors’ contributions to outcomes are
difficult to separate. Second, worker productivity is a
consequence of endogenously matched human cap-
ital and firm capabilities, complicating its identifi-
cation through standard regression techniques. We
tackle these challenges by assembling data on all U.S.
patents granted by the U.S. Patent and Trademark
Office (USPTO) between 1973 and 2010. Patents re-
cord the identity of their inventors andfirm assignees,
allowingus to construct a 37-yearpanel of eachpatenting
firm’s and patenting inventor’s annual patenting
output—our proxy for inventive performance. To
tease apart the relative contributions of firms and
inventors for innovation, we apply the identification
strategy of Abowd et al. (1999) (henceforth AKM).
This strategy requires that we use a subsample of
inventorswhowork atfirms connected to one another
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bymoving inventors. Aftermerging in theCompustat
data and excluding continuation patents, we retain
about 709,000 inventors at 2,500 U.S. publicly listed
firms, with detailed information on time-varying firm
characteristics that influence inventor performance
from 1976 to 2010. We leverage this AKM sample to
tease apart the contributions of inventors and firms
to innovation and thus address the first empirical
challenge described above. Unlike a traditional fixed
effects approach (Bertrand and Schoar 2003), which
can only estimate worker fixed effects for workers
who move (only about 26% in our sample), the AKM
approach allows us to estimate employer and em-
ployee effects even for the nonmoving inventors.
Conceptually, we first pin down the fixed effects
of moving inventors and firms connected by these
movers and then use this information to identify the
fixed effects of nonmovers.

Applying the AKM method to our sample reveals
inventor-specific fixed effects explain 18%–37% of the
observed variance in inventors’ patenting perfor-
mance. In contrast, only 2%–7%of the overall variance
in inventor productivity is explained by firm fixed
effects. The observed firm-level variables, such as age,
size, patent stock, and research and development
(R&D) intensity, explain another 1%–8%of the overall
variance. These results suggest inventor-specific hu-
man capital explains much of the variance in inven-
tor output, which echoes the relative importance of
workers documented in prior literature using the
AKM method and its extensions to estimate wage
equations (Abowd et al. 1999, Andrews et al. 2008,
Gruetter and Lalive 2009, Bonhomme et al. 2019).
Firm-specific innovation capabilities add to the in-
novation performance of inventors, but their contri-
bution pales in comparison with that of the human
capital of inventors.

The AKM method extracts the time-invariant ef-
fects of employer and employee capabilities on worker
output (see Iranzo et al. 2008, Graham et al. 2012,
Card et al. 2013, Ewens and Rhodes-Kropf 2015, and
Peeters et al. 2020 for applications of the approach
to other contexts). A drawback of this approach is
that it estimates worker and firm capabilities using
worker performance over the entire sample period,
making it difficult to study matching between em-
ployers and employees as a function of their capa-
bilities (Bonhomme et al. 2019). We address this
challenge by implementing a rolling window strategy
for AKM estimations (as in Card et al. 2013). That is,
we estimate standard AKM fixed effects for inventors
and firms in progressive time windows, allowing the
estimates to vary across the windows. For example,
we first limit the AKM estimation sample to a 10-year
window from 1978 (the first year of our estimation
sample after including lagged explanatory variables

for periods t − 2 and t − 1) through 1987 and estimate
the firm and inventor effects based on movements
within this window. These estimates are not con-
taminated by changes to inventors and firms after
1987, and we use them to examine how the fixed
effects predict movements in 1988. Next, we draw a
new subsample of 10 years—by rolling the window
one year—from 1979 through 1988 and estimate AKM
firm and inventor effects based on moves within this
new window. These estimates are used to examine
how the fixed effects predict movements in 1989 and
so on. Conditional on the inventor moving, we find a
negative correlation between inventor human capital
and the innovation capability of her destination firm
but a positive correlation with the average human
capital of the inventor’s coworkers at the destination
firm. These patterns hold in the larger sample (in-
cluding movers and nonmovers): high human capital
inventors appear more likely to be placed at firms
with low innovation capabilities but other high hu-
man capital workers.
This finding of negative assortative matching be-

tween worker and firm innovation capabilities is
difficult to square with traditional models that sug-
gest positive assortative matching between workers
and firms (Becker 1973). One possible explanation is
that our estimates have a downward bias, either
caused by the presence of match quality and en-
dogenous inventor mobility or as the result of limited
mobility among moving inventors in the connected
worker-firm network (Andrews et al. 2008). We
implement a battery of empirical checks to examine
the implications of endogenous mobility or limited
mobility bias (Lazear et al. 2015, Abowd et al. 2019,
Jochmans and Weidner 2019). We find that these
potential downward biases are unlikely to explain the
negative assortativematching between inventors and
firms we uncover.
An alternative explanation for our results is that the

standard assumption of supermodular match payoff
functions fails to apply in the present case. To explore
this possibility, we develop a formal model in which
the logarithm of innovation rate is additive in firm
and inventor type. This functional form would sug-
gest positive assortative matching between innova-
tors and firms, as the innovation rate is a super-
modular function of firm and inventor type.1 However,
a critical assumption of our model is that inven-
tors care about wages and the immediate outcome of
their efforts, namely innovation output. Inventors
may have intrinsic preferences over innovation out-
put (e.g., publications or patents as in Stern 2004) or
value outputs as a signal of their productivity to la-
bor markets (Kline et al. 2019, Melero et al. 2020).
Moreover, we assume that inventors’marginal utility
of innovation output is diminishing: an additional
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patent matters more for an inventor with fewer patents
than for an inventor with more patents under her belt.
Specifically, we assume that the marginal utility of in-
novation declines at a higher rate than a logarithmic
function. We also assume that the firms’ profit function
is additive in the log of innovation output and wages
paid to inventors.

We show that the equilibriumof thematching game
(i.e., the core of the game) features negative assor-
tative matching between firms and inventors. This
results from the fact that the innovator-firm match
function is submodular (even though the innovation
function itself is supermodular). In other words, our
theoretical result implies that low human capital in-
ventors match with high innovation capability firms.
The idea is that the innovation boost provided by
firms with high innovation capabilities is particularly
valuable for low human capital inventors, who are
willing to accept lowerwages for the amenity of higher
innovation rates. By contrast, high human capital
inventors cluster at firms with low innovation capa-
bilities. Intuitively, these inventors have less to gain
from their employer’s innovation capabilities, placing
a relatively greater weight on their financial com-
pensation.2 In terms of the matching literature, the
critical step leading to our result is the assumption
that workers care about financial compensation and
their innovative output and that the marginal utility
of innovative output is decreasing. Together, this
implies that the firm-inventor matching function is
effectively submodular, which in turn leads to neg-
ative assortative matching.

Our studymakes several contributions to the study
and practice of innovation and strategicmanagement.
First, research that investigates how firm character-
istics, such as incentive schemes or organizational
culture, affect innovation, and performance suggests
that most variance in performance remains unex-
plained even after accounting for the effects of firms’
characteristics such as industry, business segment,
and corporate structure (Nelson and Winter 1982;
Rumelt 1984;Wernerfelt 1984; Barney 1986;McGahan
and Porter 1997, 2002; Bloom et al. 2013; Martinez
et al. 2015). Our results suggest that differences in the
human capital embedded in firms accounts for a
substantial portion of the unexplained variance, at
least in innovation performance. We thus comple-
ment the growing body of research on worker char-
acteristics and human resource management by pro-
viding one of the first assessments of the relative
importance of human capital for innovation at orga-
nizations (Hatch andDyer 2004,Huckman and Pisano
2006, Groysberg et al. 2008, Jones 2009, Lazear 2009,
Campbell et al. 2012, Mayer et al. 2012). Indeed, our
results call for increased attention of management
scholars and managers, focused as yet on firm-level

process and routines, toward shifting the focus of analysis
to individual workers and human capital (Zucker et al.
2002, Agarwal et al. 2004,Wuchty et al. 2007, Azoulay
et al. 2010, Groysberg 2010, Singh and Fleming 2010,
Mollick 2012, Agarwal and Ohyama 2013).
Second, we extend important research that con-

siders how workers and firms match to the context of
innovation. Consistent with recent studies of routine
workers that record departures from the standard
positive assortativematching framework (Becker 1973),
we provide evidence for negative assortative matching
between firm-specific innovation capabilities and hu-
man capital (see also Lindenlaub 2017, Eeckhout 2018,
Eeckhout and Kircher 2018). We document positive
assortative matching among workers—highly tal-
ented workers prefer to work at firms with other highly
talented workers. Our theoretical framework proposes
that these nuanced sorting patterns can arise from the
distinct preferences of inventors for innovation output,
which they tradeoff against preference for wages (Stern
2004). Our theoretical model thus provides a unique
explanation—one rooted in the unique preferences of
inventors—to understand how innovative workers
choose their employers.
Finally, our empirical and theoretical results sug-

gest that inventor human capital and firm-level in-
novative capability are strategic substitutes, whereas
inventor and coworker human capital are strategic
complements. Somewhat counterintuitively then, firms
with superior innovation capabilities can profit more by
hiring low-type inventors at lowerwages than expensive
high-type inventors. Nevertheless, our empirical anal-
ysis uncovers that much of the variation in inven-
tor output in the data are explained by human capital
rather than firm-specific capabilities, suggesting strat-
egies based on strong firm-specific capabilities are
rather rare.

2. Data Description
2.1. Sample Construction
We start with the population of U.S. patents granted
during the years 1973–2010, obtained from the USPTO.
Limiting the last patent grant year to 2010 allows us
at least five years to observe forward citations, our
measure of innovation impact, to the latest patents
without truncation.Wedisambiguate inventor names
recorded by the USPTO using the procedure outlined
in Li et al. (2014) and standardize assignee names
using the procedure in Hall et al. (2001). Treating
unproductive years of inventors as missing can lead
to an overestimation of the contribution of inventors
relative to firms. To address this, we include inventor-
firm-year observations for unproductive years be-
tween an inventor’s first and last patenting year in
our sample and assign zero patents for them. To
further improve the accuracy of inventor moves,
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following Ge et al. (2016), we link data on employ-
ment histories obtained from LinkedIn with inventor
histories from the USPTO data (see Online Appen-
dix B). The procedure improves the timing of moves
for about 23,000 inventors. Approximately 20% of
the successfully granted patent applications during
1973–2010 emerge from continuations of previous
applications. We exclude these continuation patents
from our sample, as they may be similar to their
previously granted parent and may overstate inno-
vation productivity.

Among unique assignees of patents in this USPTO
sample, 45% are U.S. firms and 45% are foreign. The
remaining are individual inventors and other as-
signee types (universities, nonprofits, and govern-
ment institutions). To incorporate firm characteris-
tics, we match the USPTO sample to Compustat data
on publicly listed U.S. firms using the procedure
described in Bessen (2009). Thematching procedure is
based on patent grants from 1976 and accounts for
changes in patent ownership because of mergers,
acquisitions, and spinoffs as of 2006, whichwe extend
to 2010. This yields a sample of active inventors over
1976–2010, for whom we have information on their
firm’s Compustat variables, including firm age, R&D
expenditures, capital intensity, sales, changes in op-
erating income, and the number of employees. How-
ever, we lose the first two years of observations because
we use the moving average of the values from t − 2 to t
for R&D intensity, capital intensity, sales, operating
income change, and patent stocks.

From this sample, we construct the baseline AKM
estimation sample by identifying firms connected
through mobile inventors. The subsample of the largest
connected network has not only mobile inventors but
also inventors who do not change firms in the network.
This encompasses more than 99% of all inventor-firm-
year observations formed by inventors with at least one
patent-year observation assigned to a Compustat firm.3

As Table 1 shows, the baseline AKM sample has in-
formation on 708,547 unique inventors working at
2,511 firms, resulting in more than 2.5 million inventor-
firm-year observations. In robustness analyses, we re-
strict the sample to include inventors with careers of at
least 6 or 10 years in this sample, because these restric-
tions may improve the reliability of the estimated in-
ventor fixed effects. Table 1 summarizes these samples
as well.

2.2. Sample Selection
In an ideal world, we would apply our identification
strategies to a sample that includes data on all in-
ventors and their full employment and invention
histories. Instead, we are forced to work with a
second-best: U.S. patenting records of inventors and
their employment histories inferred from the records,

potentially updated using LinkedIn data. The AKM
sample restricts U.S. patentees to those working at
Compustat firms, and the requirement that inven-
tors belong to firms connected through the inventor
movement further narrows the sample.
We examine potential selection biases induced by

our sample construction procedure by comparing the
AKM sample to the overall USPTO sample with all
inventors active in our sample period. The USPTO
sample is comprehensive but precludes including
observable firm characteristics drawn from Compu-
stat. Consequently, the AKM sample has no inventors
that are unconnected to firms, whereas unconnected
inventors make up 13% of the USPTO inventors.
Given Compustat includes some of the largest firms
with thousands of employees, one can also expect
AKM firms to have a larger number of movers. In-
deed, 94% of the 2,511 AKM firms have at least two
movers, whereas only 45% of the 248,198 overall
USPTO firms (which includes AKM firms) have two
or more movers. Nevertheless, the AKM sample has
a higher fraction of inventors who have never moved
firms (about 91% of all inventors vs. 83% in USPTO),
likely because Compustat firms have a longer life-
span. A considerable number of inventors moved
once in both samples (6% and 11% in AKM and
USPTO, respectively) but moving twice or more is
rare in the AKM sample (3% of inventors). Online
Appendix A, Table A1, tabulates the corresponding
descriptive statistics.

2.3. Variable Description
Table 2 describes the variables we use to measure
innovation performance, inventor characteristics, and
firm characteristics. For each inventor i at firm j in year t,
we measure the total number of patents weighted
by forward citations excluding self-citations over the
first five years after patent publication. We correct for
teamwork by dividing the measure by the number of
coinventors on each patent. To measure extreme in-
novation outcomes such as breakthroughs, we con-
struct two additional measures. Following Singh and
Fleming (2010), the first measure counts patents in the
fifth percentile of citations for a given cohort of pat-
ents by grant year for an inventor, known as break-
throughs. The second is the log of the number of
patents produced, which fail to obtain a single cita-
tion, referred to as useless inventions.
The AKM samples include an array of variables

that control for correlates of inventors’ performance
(Table 2). Following prior literature (Hall and Ziedonis
2001), we control for firm age, the existence of R&D
expenditures, R&D intensity, capital intensity, sales,
changes in operating income, and the number of
employees. We also control for the effects of firms’
knowledge stocks on inventor output with a measure
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of a firm’s patent stock in a given year. Table 1
compares the various AKM subsamples with respect
to these firm characteristics. A last set of variables per-
tains to the overall financial performance of the orga-
nizations in our data set. Here we consider a firm’s net
income and Tobin’s Q as calculated from its Com-
pustat data for a given year.

3. Contributions of Firms and Inventors
to Innovation

3.1. The AKM Model
Assessing whether persistence in innovation perfor-
mance is driven by human capital or high ability firms
requires disentangling the contributions of inven-
tor and firm-specific capabilities. To accomplish this,
following Abowd et al. (1999), we model inventor’s
inventive output y following the function y � e(α+φ),

where α is the inventor’s human capital and φ is
the firm’s innovation capability. The output function
is supermodular in inventor and firm ability, reflecting
their complementarity in output. Our theoretical anal-
ysis, in Section 6, shows that such complementarity
need not imply complementarity in match surplus
and positive assortative matching between inven-
tors and firms. The reason is that match surplus also
includes inventor utility, and if the latter is suffi-
ciently concave in innovation output, we obtain a
submodular match function.
Taking logs, we derive the log-additive innovation

production function, log y � α + φ. We include the set
of time-varying contributors to innovation defined in
Table 2 and estimate a model of the form

log yijt � βxXit + βzZjt + ωjt + γt + αi + φj + εijt. (1)

Table 1. Sample Description and Summary Statistics

Column 1 2 3

AKM estimation subsamples Full 6+ observations 10+ observations

Inventor-firm-year observations 2,566,626 1,675,784 1,174,268
Unique inventors 708,560 146,391 76,862
Unique firms 2,511 2,273 2,000
Mean number of inventors per firm 282.4 64.4 38.5

Mean and standard deviation AKM variables Full 6+ observations 10+ observations

Citation Weighted Patents 3.22 3.33 3.19
(75.1) (88.1) (65.5)

Experience 5.81 7.96 9.44
(5.67) (5.92) (6.29)

Firm Age 17.7 17.9 17.8
(8.80) (8.37) (8.04)

Dummy R&D 0.98 0.98 0.98
(0.13) (0.13) (0.14)

R&D Intensity (%) 0.37 0.23 0.26
(61.5) (45.3) (53.5)

Capital Intensity (%) 0.55 0.43 0.47
(55.0) (40.0) (47.6)

Firm Sales (m$) 42.1 43.6 44.4
(45.1) (44.9) (44.8)

Operating Income Change (%) 0.52 0.47 0.39
(5.33) (4.97) (4.39)

Employees 119.1 126.3 123.7
(121.1) (119.0) (119.8)

Patent Stock 4,985.1 5,081.9 4,921.9
(7,494.2) (7,424.5) (7,141.2)

Notes. The top panel of the table describes the observations in the datasets of the AKM analyses. The
estimation subsamples correspond to the connectedness sample or the sample of firms connected to each
other by inventor mobility. The first column for the AKM estimation subsamples describes all inventors
who filed at least one patent during 1978–2010, the second column describes inventors with at least 6
years of patenting experience, and the third describes the subsample of inventors with at least 10 years of
experience. In both columns 2 and 3, we include intermediate unproductive years, when counting an
inventor’s career length. Because the AKM estimation subsamples contain observations for each of the
years during which the inventors were active, the number of inventor-firm-year observations are strictly
greater than the number of unique inventors. In the bottom panel, we detail the mean and standard
deviation (in parentheses) of the variables included in the regressionmodel of Equation (1). All summary
statistics refer to the variable in levels, even when they are included in logarithmic scale in the model.
Please refer to Table 2 for detailed descriptions of these variables.
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Here, yijt refers to the number of citation-weighted
patents of inventor (i) at firm (j) in year (t). The vectors
Xit andZjt represent time-varying inputs related to the
inventor (Xit) and firm (Zjt). The vectors γt, αi, and φj
contain sets of year, individual inventor, and firm
fixed effects, respectively, andωjt is a dummyvariable
set to one if firm j reports R&D expenditure in year t
and zero otherwise. εijt denotes an inventor-firm-
year-specific error term. A key identifying assump-
tion of the AKM method is exogenous mobility, im-
plying that the mobility decisions of inventors may
be driven by components of the model, such as their
own fixed effect or the firm fixed effect of their current
and future firms but not by (components of) the er-
ror term.

3.2. Baseline AKM Results
To adjudicate the contributions of inventor- and firm-
specific effects on inventors’ performance, we cal-
culate the covariance of annual innovation output
with the inventor-, firm-, and year-fixed effects, di-
vided by the variance of the dependent variable, that
is, Cov (y, inventorFE)

Var (y) , Cov (y, firmFE)
Var (y) and Cov (y, yearFE)

Var (y) . These
ratios obtained from AKM regression estimates can
be interpreted as the fraction of the total R2 attrib-
utable to inventor-specific, firm-specific, and year-
specific factors, respectively. We are also interested
in the joint significance of the inventor and firm ef-
fects, which we assess with a joint F-test of the esti-
mated coefficients.

We estimate the AKM model in Equation (1) us-
ing the user-written STATA command FELSDVREG
(Cornelissen 2008) and report the results in Table 3.
Column (1) reports the results from the full AKM
sample for the regression with all firm characteristics
(Zjt) and inventor observables (Xit) included. Our
results indicate that the contributions of inventor and
firm effects to innovation performance are highly
significant. Inventor heterogeneity explains 34.1%
and firm heterogeneity 3.2% of the total variance
in inventors’ innovation performance.4 In relative
terms, inventor effects are by far the most impor-
tant factor contributing to the variance in innovation
performance among inventors. The covariance be-
tween the inventor and firm effects in column (1) is
negative, which anticipates our result on negative
assortativematching between inventor and firm fixed
effects in Section 5. Although not immediately rele-
vant to our objective, we note that year-effects sub-
sume the influence of factors such as the macroeco-
nomic environment or patent law changes that
commonly affect the patenting intensity of all inventors
in the sample and account for about 2.1% of the
explained variance in patent performance in our panel.
Inventor fixed effects, firm fixed effects, and year fixed
effects are all jointly significant at p < 0.01.

3.3. Robustness Checks
Columns (2)–(10) of Table 3 report the results of ro-
bustness checks. Columns (2) and (3) repeat the analysis

Table 2. Variable Descriptions

Variable Description

Innovation output measure
Citation-weighted patents Number of patents p multiplied by the five-year forward citations (excluding self-citations) to these patents,

filed by inventor i at firm j, in year t, divided by number of coauthors on patent p.
Breakthrough patents Number of patents p in the fifth percentile of citations for a cohort of patents, by inventor i at firm j, in grant

year t.
Useless patents Number of patents p which fail to obtain a single citation, filed by inventor i at firm j, in grant year t.

Inventor characteristics (continuous variables enter estimation in logarithmic scale)
Past “X” Average value output measure “X” in previous one, five, or nine years (depending on specification) for

inventor i.
Experience Number of years between first and current patent in data set for inventor i.
Coworkers’ citation-weighted

patents
Average of “Citation Weighted Patents” by other inventors at firm j in year t excluding focal inventor i.

Firm characteristics (continuous variables enter estimation in logarithmic scale)
Firm age Firm j’s age in year t in years.
Dummy R&D Dummy whether firm j reports R&D expenditure in year t.
R&D intensity R&D Expenditures/Sales averaged over years t − 2 to t.
Capital intensity PP&E/Sales averaged over years t − 2 to t, where PP&E is Property, Plant and Equipment expenditure.
Sales Firm j’s averaged sales over years t − 2 to t.

Operating income change Change in operating income of firm j averaged over years t − 2 to t.
Employees Number of employees for firm j in year t.
Patent stock Sum of patents at firm j in years t-2 to t.

Firm performance measures
Tobin’s Q Tobin’s Q for firm j in year t computed using the formula: AT+(CSHO*PRCC C)−CEQ

AT , where AT is total assets, CSHO
is common outstanding shares, PRCC_C is the annual closing stock price, and CEQ is common equity.

Net income Net income for firm j in year t minus minimum of net income in year t over all firms.
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in Column (1) using a subsample of inventors with at
least 6 and 10years of experience, respectively,wherewe
count both years with and without patents toward an
inventor’s experience. This allows more observations,
and hence more degrees of freedom, to identify each
individual effect. It also addresses the concern that
inventor effects may be noisy as a result of overfitting
the fixed effect on a short inventor career. The relative
contribution of inventor fixed effects goes down to
20.2% and 18.3% in these analyses compared with a
3% contribution of firm fixed effects. Hence, the in-
ventor effects still explain a far larger portion of the
variance in innovation output than the firm effects.
The decline in the explanatory power of the inventor
effects could indicate we are overfitting the fixed
effects of inventors with a very small number of
yearly observations. If we estimate the AKM model
for a subsample where we require inventors to have
at least two observations, we find that this leads
to a sharp decrease in the proportion of variance
explained by the inventor fixed effects (from 34% to
25%). On the other hand, restricting the sample to
inventors with two or more observations reduces the
number of inventors in the sample by about 60%,
which clearly poses a problem in terms of the rep-
resentativeness of our estimation sample.

Our AKM sample in columns (1)–(3) are based on
firms connected through a network formed by in-
ventor moves. This allows us to compute the fixed
effects of both mobile and immobile inventors in
connected firms. Of course, mobile inventors may be
systematically different from inventors who have
never changed firms and one may question AKM’s
imputation of fixed effects for nonmobile inventors.
Therefore, column (4) reports the importance of in-
ventor and firm effects obtained by estimating Equa-
tion (1) on a subsample of mobile inventors alone (as
in Bertrand and Schoar 2003). This subsample of
movers yields estimates of inventor-fixed effects quite
close (17.9%) in importance to the ones obtained in
columns (2) and (3). Column (5) repeats the estima-
tion in column (1), but without any observed firm or
inventor characteristics. This assures that the esti-
mated importance of inventor-fixed effects relative
to firm-fixed effects reported in Column (1) is not
because we included several firm characteristics and
only a few inventor characteristics as controls. The
results we obtain in column (5) are similar to those
in column (1).

Another potential concern is that the productivity
of coworkers may affect the inventor’s own output
over and above the firm’s time-invariant impact (Jones
2009, Jaravel et al. 2018). In our baseline model, the
firm and year effects may both partially account for
this, depending on whether coworker productivity
evolves through common time-varying shocks or

mainly varies across firms. Our baseline model may,
therefore, overestimate the relative importance of the
firm and year effects in this case. Because we cannot
estimate a full set of coworker effects, which would
lead to strict multicollinearity, we introduce the con-
temporaneous output of inventors at the firm to probe
the severity of this issue. Although this approach raises
endogeneity concerns, we show in column (6) that it
does not dramatically affect the importance of the firm
effects. Finally, we exclude observations of firms that
change ownership because of mergers and acquisitions
of entities in column (7), and these results are similar
to those in column (1).Again, the inventor-specific effects
explain 34% of the variance in their inventiveness.5

In the AKM estimation, we estimate one fixed effect
for each firm regardless of its degree of centralization.
Treating a large multinational firm such as IBM with
multiple product and geographic units as a single
entity can bias our results (Arora et al. 2014). To
address this concern, we conduct two robustness
checks where we split each Compustat entity into
branches. In the first check, we group all inventors
located in the same state (if located in the United
States) or country (if located outside of the United
States) into one firm entity (column 8). In the sec-
ond analysis, we group all patent activity in the
same National Bureau of Economic Research (NBER)
technology class within the Compustat firm into one
entity (column 9). These robustness checks more
likely reflect independent divisions and departments
within firms. A concern in this exercise is the trans-
lation of the explanatory variables to a suitable level
of disaggregation. We therefore recreated the patent
stock variable by calculating through patents at this
lower level of aggregation in each case. We assume
that the capital and R&D intensity are uniform across
subunits within firms because these cannot be ap-
portioned in a meaningful way. We find that the re-
sults remain qualitatively similar in these cases. In
column (10), we examine the robustness of our results
to including self-citations in the dependent variable
and again find similar results as in column (1).

3.4. Distribution of Inventor and Firm Effects
Here we examine heterogeneity among inventors
and firms in their estimated inventive capabilities.
Because a given inventor (firm) fixed effect should be
interpreted relative to all other inventor (firm) fixed
effects in the sample, we follow the common practice
of rescaling the estimated effects by the distribution
mean. Rescaling centers the distributions of fixed
effects at zero. Figures 1 and 2 display the distribution
of inventor- and firm-fixed effects obtained from the
regression model in column (1) of Table 3. After
rescaling, the average fixed effect equals 0 for both
firms and inventors. The standard deviations of the
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inventor- and firm-fixed effects are 0.81 and 0.59,
respectively. The median inventor has an estimated
effect of −0.131, that is, slightly below the population

average, whereas the first and third quartile stand
at −0.636 and 0.466, respectively. This leftward shift
with respect to the population average is caused by

Figure 2. (Color online) Distribution of Firm Fixed Effects Drawn from AKM Estimation

Notes. The figure plots the distribution of the 2,511 firm fixed effects estimated through the AKM specification and sample corresponding to
column (1) of Table 3. The estimated firm fixed effects have been standardized by subtracting the population mean from the estimates. The
vertical lines indicate the top quartile, median, and bottom quartile of the estimated firm fixed effects.

Figure 1. (Color online) Distribution of Inventor Fixed Effects Drawn from AKM Estimation

Notes. The figure plots the distribution of the 708,560 inventor fixed effects estimated using the AKM specification and sample corresponding to
column (1) of Table 3. The estimated inventor fixed effects have been standardized by subtracting the population mean from the estimates. The
vertical lines indicate the top quartile, median, and bottom quartile of the estimated inventor fixed effects.
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the relatively long right tail of the distribution. As can
be seen in Figure 1, the left tail of underperforming
inventors is fairly short relative to the right tail,
suggesting the presence of star inventors. By com-
parison, the distribution of firm effects is more bal-
anced. Here the median estimated effect is 0.008, with
the first and third quartiles at −0.251 and 0.263, re-
spectively. Figure 2 confirms this observation, be-
cause it shows no apparent skewness in the distri-
bution of firm effects. Hence, star firms seem less
common than star inventors.

3.5. Impact of Technology Field, Firm Size, and
Alternative Output Measures

Previous research suggests that the production of
innovation output differs significantly among tech-
nology fields (Cohen et al. 2000, Malerba 2005). We
explore how these differences impact the relative
contribution of firms and inventors to innovation
production by estimating the baseline AKM specifi-
cations, with the complete set of covariates, for each of
the six technology fields defined in Hall et al. (2001).
In this exercise, we only consider patents within the
technology field to calculate an inventor’s output, as
well as a firm’s stock of patents. As shown in Online
Appendix A, Table A3, inventor effects explain be-
tween 25% and 30% of the variance of innovation
output in each technology field. Firm capabilities are
significantly less important and explain between 3%
and 7.5%of the variance in inventor output for eachfield.

The relative contributions of firms and inventors
may also be sensitive to firm size. We, therefore, re-
peat the AKM estimation in subsamples of firms with
varying numbers of inventors. Our results (Table A3)
indicate that firm effects explain a larger share of the
variance for smaller firms with less than 50 inventors
compared with firms with more than 1000 inventors
(10% vs. 1%). As discussed before, the firm effect in
smaller firmsmay take up some of the effect of group-
level human capital. Even so, the contribution of in-
ventor effects is much larger across the entire firm size
distribution, with values ranging from 34.5% to 40%.

If firms contribute more to the generation of high-
impact patents rather than to the number of patents or
citations, then our previous analyses do not capture
such nuance. To address this concern, we repeat the
estimations using measures developed in Singh and
Fleming (2010) for breakthroughs and useless in-
ventions as the dependent variables. The results are
reported in Online Appendix A, Table A4. Both in
terms of high-end and low-end patents, the contribu-
tion of inventors outweighs the contribution of firms
toward explaining variation in innovation performance.
This is in line with the results we obtain for the log
of citation-weighted patents produced per year.

4. Inventor-Firm Matching
4.1. Time-Varying Inventor and Firm Effects
If human capital is the most important contributing
factor for inventor performance, then how do in-
ventors choose the firms they work for? A deeper
understanding of thematching process between firms
and high-skilled workers is essential to address this
question. In this section, we focus our attention on
matching between human capital and firm capabilities.
The standard AKM estimates reported in Section 4

poses some challenges to study matching between
inventors and firms. To illustrate why, suppose we
are interested in relating an inventor’s movement
between two employers in year t to her individual
ability, as estimated by AKM. When individual ef-
fects are estimated on the full sample, an inventor’s
effect is constructed from her average innovation
output across all her employers, net of observable
inputs, and firm capabilities. This includes observa-
tions both before and after year t, and as such, these
estimates are contaminated by the firms to which the
inventor has not yetmoved in year t (butwill do so in a
later year in the sample period). If we were to use
these estimates to analyze the inventor’s move in year t,
it would be impossible to disentangle whether an
inventor with a high estimate moved to a firm with
greater ability or whether the inventor’s estimate is
high, because it is partly derived from her time
working at a firm with greater capabilities. The same
holds true for estimates of firm capabilities. The
presence of such match dynamics undermine the
assumption of our baseline analysis (and theory we
present in Section 6) that firm and inventor types are
constant through the sample.
With this caveat in mind, we propose a rolling

window procedure that derives time-varying estimates
of inventor and firm effects through the AKM meth-
odology. To implement the procedure, we begin by
limiting the sample to a 10-year period from 1978
through 1987. Then, we estimate Equation (1) on the
largest network in this subsample to obtain firm and
inventor effects. Crucially, these estimates are not
contaminated by how the inventor and firm effects
change as a result of inventor moves after 1987.
Next, we draw a new subsample of 10 years by rolling
the window by one year, from 1979 through 1988.
We again estimate Equation (1) on this sample. We
continue this rolling procedure until we arrive at the
end of our main sample in 2010. Because the effects
in different windows may be estimated in compari-
son with different benchmark inventors (firms), we
standardize the estimated inventor (firm) effects by
subtracting the mean and dividing by the standard
deviation of all inventor (firm) effects in the same
subsample.We thus end upwith a set of standardized
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time-varying estimates for firm and inventor effects
which we can leverage to informally check matching
patterns. These are, in our view, best interpreted as
time-varying measures of an inventor’s (firm’s) rel-
ative innovation ability, compared with the distri-
bution of contemporary inventor (firm) abilities (i.e.,
those active in the past 10 years). To examine the
robustness of our results, we implement the same
procedure for rolling windows that span five years.

4.2. Which Inventors Move?
We first use the individual effects estimated through
the rolling window algorithm to investigate which
inventors are likely to move to another firm in the
future as a function of their current human capital. To
this end, we define a mobility indicator yit, which
equals 1 in year t for inventor i at firm j if the next pat-
ent by inventor i is filed at a different firm than firm j.
We set this indicator equal to 0 if the next patent filed
by inventor i is filed at firm j and code the variable
value as missing if the inventor does not reappear in
the sample after year t. We then estimate a regression
model to relate this indicator to the estimates of in-
ventor effects obtained from the window ending in
year t. In light of the literature on star inventors, we
allow for nonlinear effects along the distribution of
the estimated inventor capabilities. Hence, we do
not include the estimated inventor effect directly
but construct a vector of indicator variables, which
classify the estimated inventor effects into deciles.
As such, we obtain a profile of effects along the deciles
of the estimated inventor capabilities rather than a
single estimate for the average effect. Our model takes
the form

yijt�β0+βaα̂it+βf ϕ̂jt+βcE[α̂ct]jt+βxxijt+γt+σj+εit. (2)

In Equation (2), α̂it denotes the vector of indicators for
the decile of the estimate of inventor i’s individual
effect obtained from the 10- (or 5-) year rolling win-
dow ending in year t. The model further includes ϕ̂jt,
which represents a vector of indicators for the decile
of the estimated firm effect, and E[α̂ct]jt, which stands
for the average estimated inventor effect for all in-
ventors c, filing patents atfirm j in year t.We construct
these variables based on estimates drawn from the
same rolling window as those used for α̂it. We also
control for the current tenure of inventor i at firm j
(xijt), and a set of year (γt) and North American In-
dustry Classification System two-digit level fixed
effects (σj). We estimate Equation (2) using a linear
probability model with bootstrapped standard er-
rors, such that the coefficients of the inventor effects
can be interpreted as marginal probabilities relative
to the lowest decile.6

To allow a clear interpretation of the estimation
results, we plot the coefficients of the decile indicators
with their confidence interval in Figure 3.7 We find
that inventors in higher deciles are more likely to
move and the probability to move increases along
with the inventor decile. Inventors in the eighth and
ninth decile of estimated inventor ability are most
likely to move (about 4% more likely than the lowest
decile). By contrast, inventors in the very top decile of
the ability distribution move less often than those just
below the top category. Although they are still more
likely to move than the bottom decile (about 2% more
likely), this may indicate that firms fight harder to retain
the very top performers comparedwith those just below.

4.3. Human Capital and Inventor-Firm Matching
Next, we study how the inventor’s estimated capa-
bilities derived from the rolling window procedure

Figure 3. Estimates of Inventor Mobility by Decile of Inventor Effect

Notes. This figure plots the estimated coefficients for the inventor effect decile estimates in the inventor-firm matching models reported in
Table A5 of the online appendix. We depict the point estimate relative to the bottom decile (dot) together with its bootstrapped 95% confidence
interval (whiskers). Panel (a) refers to column (2) and panel (b) to column (4) of Online Appendix A, Table A5.
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correlate with characteristics of the firm, to which
the mobile inventor moves. In particular, we test
whether more high-skilled inventors are attracted
to (a) firms with superior firm-specific inventive ca-
pabilities or (b) firms with high-skilled coworkers.
Our sample for this analysis consists of all movements
by an inventor i from a firm j to a new firm k, for which
we are able to obtain an estimate of the inventor effect
from the rolling window ending in the year t, that is,
the last year inventor i is observed at firm j. Formally,
we estimate the following regression model

α̂it � β0 + βkxkt + βixit + γt + εit. (3)

In Equation (3), the dependent variable α̂it refers to the
mobile inventor’s estimated effect before the move.
The vector xkt refers to characteristics of the next firm k
at time t, that is, before inventor i has joined firm k.
These characteristics primarily include (a) firm k’s
estimated firm capability and (b) the average esti-
mated ability of inventors active at firm k. We further
control for firm k’s size,measured as log of assets, age,

and profitability, proxied by the Tobin’s Q, and log
net income. We measure these firm characteristics
as described by the variable definitions in Table 2. We
standardize each characteristic by subtracting the
average across all active firms in year t and dividing
by the standard deviation among firms in year t.
In each specification, we further add a constant term
(β0), the log of inventor experience in years (xit), and a
set of year fixed effects, γt.
Table 4 reports the results obtained by estimating

Equation (3) for the 5- and 10-year rolling windows.
We find that firm-specific innovation capability cor-
relates negatively with the ability of inventors moving
into the firm. This suggests negative assortative
matching between the innovation capability of the firm
and the human capital of inventors. Thus, firms with
lower estimated firm-specific innovation capabilities
attract inventors with higher estimated human capital.
Our results for the hiring firms’ average inventor
ability lead us to the opposite conclusion. Moving
inventors with higher human capital join firms where
their future coworkers also have, on average, higher

Table 4. Inventor-Firm Matching

Dependent variable

Moving inventor’s estimated inventor effect prior to move

1 2 3 4 5 6 7 8 9 10

Rolling window 5 year 10 year 5 year 10 year 5 year 10 year 5 year 10 year 5 year 10 year

Destination firm’s firm effect −0.035* −0.033* −0.023* −0.013* −0.026* −0.017* −0.022* −0.012*
(0.004) (0.007) (0.006) (0.007) (0.006) (0.008) (0.006) (0.007)

Destination firm’s mean inventor effect 0.100* 0.086* 0.063* 0.070* 0.059* 0.062* 0.064* 0.070*
(0.008) (0.007) (0.013) (0.013) (0.013) (0.013) (0.013) (0.013)

Destination firm’s log assets 0.008* 0.012* 0.009* 0.013* 0.006* 0.009†

(0.002) (0.004) (0.002) (0.004) (0.002) (0.004)
Destination firm’s log age −0.011* −0.012* −0.011* −0.012* −0.011* −0.012*

(0.002) (0.003) (0.002) (0.004) (0.002) (0.003)
Destination firm’s Tobin’s Q 0.006† 0.005

(0.002) (0.004)
Destination firm’s log net income 0.002* 0.003*

(0.001) (0.001)
Log inventor experience 0.205* 0.404* 0.204* 0.403* 0.205* 0.403* 0.204* 0.402* 0.205* 0.404*

(0.016) (0.024) (0.016) (0.024) (0.016) (0.024) (0.016) (0.023) (0.016) (0.024)
Constant 0.057 −0.537 0.057 −0.537 −0.103 −0.551 −0.104 −0.551 −0.102 −0.544
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Observations 47,697 46,090 47,697 46,090 47,181 46,084 45,938 44,851 47,036 46,084
R2 0.256 0.274 0.256 0.275 0.260 0.275 0.259 0.273 0.260 0.275

Notes. The table reports ordinary least squares regression results, where the dependent variable is the estimated inventor effect of moving
inventors in the year before themove obtained from themovingwindowAKM regression. Themain explanatory variables refer to characteristics
of the destination firm, also obtained in the year before the inventor’s arrival at this firm. We include the destination firm’s estimated firm effect
from the AKMmoving window, the mean of the fixed effects of inventors at the destination firm, the destination firm’s log assets, log firm age,
log net income, and Tobin’s Q. We standardize all inventor and firm effects and firm characteristics by subtracting the mean and dividing by the
standard deviation of the respective year. We control for the inventor’s premove experience and a set of year fixed effects in all models. We use a
bootstrap procedure to correct for the use of estimated explanatory variables.We first resample the original observations 100 times and create 100
sets of estimates from the moving window estimation. We then run the second stage regressions separately for each of these 100 sets of inventor
and firm effects to obtain confidence intervals. We report the median of the bootstrapped regression coefficients as the estimated coefficient.
Bootstrapped errors are reported in parentheses. FE, fixed effect.

*p < 0.01; †p < 0.05.
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human capital. This suggests positive assortative
matching among coworkers. In particular, if a mo-
bile inventor’s estimated human capital is one stan-
dard deviation higher, the estimated capability of her
destination firm is around 3% of a standard deviation
lower, whereas the average estimated human capital
of her future coworkers is between 8% and 10% of a
standard deviation higher. These results are robust
when we control for the other firm characteristics
detailed above. The contrasting matching patterns
among inventors and coinventors on the one hand
and inventors and firm capabilities on the other
suggests that rather than treating firms as having one
dimension of quality, as previous literature onmatching
has, it may be important to consider firms as multidi-
mensional entities and examine the quality of each di-
mension separately.8

To examine whether our findings of negative assor-
tative matching between inventors and firms based on
innovation capability and positive assortative matching
based on human capital characterize the stock of in-
ventors at firms, not just movers, we return to the
baseline AKM estimates (of Equation (1)) presented in
column (1) of Table 3. We plot the firm-fixed effects
and the mean estimated inventor-fixed effects at the
firms in Figure 4. These estimates are derived from the
AKM sample of all connected firms and incorporate
information on all employees at the firms. The figure
shows a large negative correlation (−0.676) between
firm-fixed effects and mean inventor fixed effects. In

contrast, Figure 5 shows a positive correlation (0.429)
between the estimated inventor and coworker fixed
effects at the firm. Thus, even considering a snapshot
of inventor-firm assignments, high-skilled inventors
are more likely to be matched with firms that have
other high-skilled inventors, but low firm-specific
innovation capabilities.
In a final analysis based on the rolling window

estimates, we relate the firm’s profitability in year t
to (a) its own estimated firm effect from the rolling
window in year t − 1 and (b) the average inventor
effect of its active inventors in t − 1. As reported in
Online Appendix A, Table A7, we find a significantly
positive relation between the current firm and aver-
age inventor effect and Tobin’s Q and the firm’s net
income. Although we do not attach any causal in-
terpretation to these findings, they support the notion
that innovative capabilities both at the firm and in-
ventor level may be valuable for the firm’s bottom
line. As such, firms may indeed face a choice to either
develop their inventor workforce or attempt to build
up firm capabilities, which may both lead the firm
to profitability.

5. Potential Estimation Biases
5.1. Limited Mobility Bias and Sparseness of the

Connected Network
In Figure 3, we depict the scatterplot of inventor and
firm fixed effects drawn from the AKM estimation
and report a negative correlation between both types

Figure 4. Inventor Fixed Effects and Firm Fixed Effects Drawn from AKM Estimation

Notes. The figure plots estimated firm fixed effects against the mean estimated inventor fixed effect at the firms. The figure is based on 2,273
estimated firm fixed effects and the same number of inventor fixed effects obtained by averaging estimated inventor fixed effects of all inventors
at each firm. Fixed effects are obtained using the AKM specification and sample corresponding to column (1) of Table 3. The estimated fixed
effects have been standardized by subtracting the population mean from the estimates.
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of fixed effects (−0.676). However, this number may
present an overly negative estimate of the correla-
tion between inventor and firm fixed effects, if our
data have limited mobility of workers across firms
(Andrews et al. 2008). The limitedmobility bias arises
because worker and firm effects are characterized by
estimation error, but at the same time, worker and
firm effects are usually estimated based on the same
observations. This implies for each data point that an
overestimate of the effect in one dimension (e.g.,
worker effect) on average results in an underestimate
of the effect in the other dimension (e.g., firm effect).
In the asymptotic case, the bias approaches zero,
because both the estimation error declines and every
firm has many moving workers, which ensures the
estimation error can be averaged out over many
worker-firm combinations. However, in samples with
short time dimensions and few movers, the correlation
between the estimation error of the worker and firm
effects will be factored into the calculated correlation
of the estimated fixed effects. This leads to a poten-
tial downward bias in the correlation between worker
and firm effect estimates, such as the one we report
in Figure 3.

A first solution to counteract this potential bias is to
calculate the correlation of worker and firm fixed
effects, which have not been obtained from the same
observations. For example, in the analysis reported in
Table 4, we relate the firm fixed effect of an inventor’s

future firm to the inventor fixed effects estimated
on observations before their move to this firm. This
implies that there cannot be a mechanical correlation
between the estimation error in the firm and inventor
fixed effects because both are drawn from indepen-
dent datapoints.As canbe seen inTable 4, we also find a
significantly negative correlation in this analysis.
A second solution, proposed by Andrews et al.

(2008), is to assess the empirical relevance of the
limited mobility bias in the data under investigation.
Here,we followtheapproachof Jochmans andWeidner
(2019), who expand thework of Andrews et al. (2008).
Their approach measures the connectedness of the
underlying worker-firm network to characterize the
estimation error in the worker and firm fixed effects.
For a given network, this then allows us to evaluate
the precision of the estimated fixed effects and how
this (im)precision biases the variance and covariance
of the estimated fixed effects.
To implement this approach, we derive the adja-

cency matrix, A, for the largest network of connected
firms in the samples examined in columns (1), (2),
and (3) of Table 3. We weigh the importance of each
connection (i.e., eachmoving inventor) by the number
of observations we have for the inventor at each firm
in the connection. Using the notation of Jochmans and
Weidner (2019), we then calculate the Laplacian L*

and normalized Laplacian S of A. These matrices char-
acterize the large sample properties for fixed effects

Figure 5. Inventor and Average Coworker Fixed Effects Drawn from AKM Estimation

Notes. The figure plots estimated inventor fixed effects against estimated coworkers’ fixed effects. The figure is based on 788,051 estimated
inventor and coworker fixed effects (greater than the number of inventor effects—708,560—because some inventors change employers and thus
coworkers). All fixed effects are obtained using the AKM specification and sample corresponding to column (1) of Table 3. The estimated fixed
effects have been standardized by subtracting the population mean from the estimates.
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estimated on the connected network. In particular, λ2,
the first nonzero Eigenvalue of S, should be signifi-
cantly larger than 0 for the network to be sufficiently
connected. As shown in Table 5, we find values of
0.030, 0.030, and 0.023. These values are clearly above
those in the teacher value-added example reported
by Jochmans and Weidner (2019) as an example of a
weakly connected network. We gauge the implied
bias in the variance of the fixed effects (see Jochmans
and Weidner 2019 for relevant formulas), by calcu-
lating the distribution of S†, which measures the
scale of the variance approximation (as calculated
from the fixed effects) to its exact value. Ideally, this
value should be close to unity for most of its distri-
bution. As shown in Table 5, the median and mean of
the variance approximations are close to 1, with the
6+ observations sample yielding the most favorable
results.9 By comparison, the teacher value-added
example in Jochmans and Weidner (2019) yielded a
mean value of 2.5 with 1.29 in the first decile. Finally,
we calculate the weighted trace of L* to get the bias in
the plug-in variance estimator measured as a pro-
portion of the error variance. Because the sample of all
inventors contains more inventors with short careers,
who are by default less mobile, the potential bias is
higher for the analysis in column (1) (approximately
10% of the error variance) than in the other samples
(approximately 2.5%–3%). Overall, these values are
in line with the occupational network analysis in
Jochmans and Weidner (2019), which serves as an
example of a reassuringly well-connected network.
This indicates that our conclusions are less likely to be
the result of biases in the variances and covariances
reported in Table 3.

5.2. Match Effects and Endogenous Mobility
The AKM technique uses inventor movements to
pin down inventor and firm-fixed effects, but it is
unlikely that inventor movement across firms is ran-
dom. Our analysis in Section 5, where we introduce a
rolling window estimation strategy to investigate

the relationship between inventor human capital and
inventor-firm matching, indeed confirms that inventor
and firm effects affect job mobility. This raises concerns
about the maintained assumption of exogenous mo-
bility in standard AKM models, but in itself does not
imply that our estimates of inventor and firm effects
are biased. In fact, as long as inventor mobility is a
function of the fixed inventor or firm effects or other
components included in Equation (1), there is no reason
to expect biases in the estimated individual effects
(Abowd et al. 2019). However, if certain qualities of
individuals or firms not captured by the fixed effects
or other included terms drivemobility and thus worker-
firm matching, our estimates will be biased.
A potential channel for the error term to influence

mobility is through the existence of match effects be-
tweenfirms andworkers. Both Lazear et al. (2015) and
Abowd et al. (2019) examine the correlation between
the average residual of a match and the fixed effects
of future employers. The test of Abowd et al. (2019)
partitions moving workers by the decile of their or-
igin firm fixed effect and their destination firm fixed
effect. If there exists a systematic pattern in these
average residuals, a proxy for the match effect, this
indicates mobility may be endogenous. After all,
sorting based on match effects would imply that in-
ventors moving to firms with higher firm effect should
see systematically higher match effects before their
move. The top panel of Figure 6 shows a graph of the
average match effect of mobile inventors at the origin
firm partitioned by the origin firm effect decile (left
horizontal axis) and the destination firm effect decile
(right horizontal axis) for the model of column (1) of
Table 3. Unlike in Abowd et al. (2019), there appears
to be no systematic pattern, which suggests that
mobility is not endogenous with respect to match
effects. However, the bottom panel of Figure 6 depicts
the number of moving inventors in each decile to
decile cell. It is clear that some cells are not sufficiently
populated in our sample to drawfirm conclusions and
conduct the χ2 test described in Abowd et al. (2019).

Table 5. Diagnostic Statistics for the Sparseness of Connected Firm Network

Column 1 2 3

Sample All 6+ observations 10+ observations

λ2 0.030 0.030 0.023
Median (S†) 1.0205 1.0162 1.0177
Mean (S†) 1.2626 1.1771 1.1877
Standard deviation (S†) 1.4517 0.8896 0.9978
Weighted trace (L*) = bias in variance as % error variance 9.86% 3.21% 2.45%

Notes. Table shows the statistics developed in Jochmans andWeidner (2019) to test the bias in two-way
fixed effects estimated on bipartite connected networks. The samples tested refer to columns (1)–(3) of
Table 5. We refer to Section 5.1 of the paper for further details and Jochmans and Weidner (2019) for
detailed definitions, formulas, and more explanation on these statistics.
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Figure 6. Average and Number of Match Effects by Current and Next Firm Fixed Effect Decile

Notes. The top panel plots the average residual or match effect of mobile inventors at their origin firm. We partition these by their origin firm’s
firm effect decile (left horizontal axis) and destination firm’s firm effect decile (right horizontal axis). The bottom panel shows the number of
individual match effects in each transition cell. Estimates and residuals are taken from the model estimated in column (1) of Table 3. We refer to
Section 6.3 of the paper and Abowd et al. (2019, p. 413) for more detail on this procedure.
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An alternative test, suggested by Lazear et al.
(2015), takes the subsample of mobile inventors and
regresses the destination firm’s fixed effect on the
average residual during employment at the origin
firm. We perform this regression on the samples used
in columns (1)–(3) of Table 3. The results in columns
(1)–(3) of Table 6 show that the match effect does not
predict the destination firm fixed effect in our data.
The coefficient estimate is insignificant and themodel
explanatory power (R2) is practically zero. A second
test proposedbyLazear et al. (2015) examines whether
the match effect in a worker’s initial employment
spell explains the quartile of the next boss’s fixed
effect. Translating this to our context, we regress the
match effect in an inventor’s first employment spell
on the decile of her second employer. The results in
columns (4)–(6) of Table 6 indicate that the esti-
mated effects are not significantly different from one
another. Moreover, they jointly explain only a tiny
proportion of the overall variance in the model. We
find similar results when we repeat this analysis

including all moves in an inventor’s career. Taken
together, these results suggest that, as in Card
et al. (2013) and Lazear et al. (2015), endogenous
mobility is not likely to be a critical concern for
our analysis.

5.3. Robustness of Matching Results
across Industries

If inventor and industry effects are positively corre-
lated between industries but negatively correlated
within industries, then the addition of these two
opposite effects can lead to no, or as in our case,
negative, correlation between the inventor and firm
effects (Abowd et al. 2000, Postel-Vinay and Robin
2002). That is, industry-specific correlation patterns
obscure potential positive correlation between the
inventor and firm effects. Related, the extent of the
sparse network problem and the bias it introduces can
be different across industries. To examine whether
our results are robust, we examine them by industry.
We show that the matching correlations we observe

Table 6. Regression Results for Endogenous Mobility Tests

Dependent variable

Destination firm FE Origin match effect

1 2 3 4 5 6

Sample 1+ observations 6+ observations 10+ observations 1+ observations 6+ observations 10+ observations

Origin match effect −0.00 −0.00 −0.00
(0.002) (0.002) (0.003)

Postmove firm FE
Second decile −0.02 0.03 0.05

(0.023) (0.019) (0.029)
Third decile 0.00 0.03 0.03

(0.021) (0.017) (0.025)
Fourth decile 0.00 0.01 0.02

(0.020) (0.017) (0.025)
Fifth decile −0.01 0.01 0.02

(0.021) (0.017) (0.025)
Sixth decile −0.02 −0.00 −0.00

(0.020) (0.017) (0.025)
Seventh decile −0.03 −0.01 −0.01

(0.020) (0.017) (0.026)
Eighth decile −0.05† −0.03 −0.02

(0.021) (0.019) (0.027)
Ninth decile −0.01 −0.01 −0.01

(0.023) (0.024) (0.032)
Tenth decile −0.04 −0.02 −0.01

(0.023) (0.021) (0.037)
Constant 0.07 0.09 0.22 −0.04 −0.06 −0.06
Observations 89,743 73,698 54,017 59,682 44,963 29,592
R2 0.000 0.000 0.000 0.001 0.002 0.003

Notes. This table shows results for the endogenous mobility tests described in Lazear et al. (2015, table 5). In columns (1)–(3), we regress the
destination firm fixed effect on the match effect in the origin firm. In columns (4)–(6), we regress the match effect in the inventor’s first
employment spell on the next firm’s decile in the firm fixed effects distribution, using the first decile of firm fixed effects as the reference category.
All match effects and firm fixed effects relate to the full AKM model reported in columns (1)–(3) in Table 3. See Lazear et al. (2015) for more
information on these tests. Standard errors clustered at the firm level are reported in parentheses.

*p < 0.01; †p < 0.05; ‡p < 0.1.
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previously are not merely aggregate results but borne
out in each of the six NBER patent-based technology
categories (Online Appendix A, Figures A2 and A3).

6. Theoretical Analysis
6.1. Potential Explanations for AKM and

Matching Results
If our empirical findings are not caused by biased
estimation, then they raise the question of what
economic mechanism generates negative assortative
matching between the inventor and firm effects, as
well as positive assortative matching among inventors,
both of which are observed in the data. Recent la-
bor economics literature seeks to explain evidence for
weak positive assortative matching, seemingly random
matching, or negative assortative matching between
firms andworkers (Abowd et al. 1999, 2002; Goux and
Maurin 1999; Andrews et al. 2008; Gruetter and Lalive
2009). We extend this literature to the case of innovation,
noting that inventors are different from normalworkers.

The classical model of matching (Becker 1973) is
associated with the prediction of positive assortative
matching. As mentioned in the previous paragraph,
the empirical literature is not always consistent with
thisprediction.Eeckhout (2018) considers three classes
of explanations to reconcile theory and empirical
evidence. The first is job search frictions: the idea that
the formation of new matches between workers and
firms is costly and thus worker and firm types fail to
match perfectly. The second explanation rests on the
inability of firms to perfectly observe worker pro-
ductivity, which also makes it more costly to obtain
positive assortative matching (PAM). Finally, the
third explanation points out that workers and firms
may match on more than one dimension, and the
multidimensionalityofmatching canproduce bothPAM
and NAM (negative assortative matching) (Lindenlaub
2017, Eeckhout and Kirchner 2018).

Our model presents a variation on the third ex-
planation. We assume that matching is driven not
only by the innovation production function but also
by inventor utility, which in turn depends on job
characteristics other than wage compensation (spe-
cifically, innovation output). In this sense, our model
formalizes the idea put forward by Bonhomme et al.
(2019), who note that workers may be willing to
sacrifice wages in exchange for better nonwage job
characteristics or amenities. Lamadon et al. (2019)
show the relative importance of amenities (e.g., prox-
imity to work, flexible work schedules, preference for
the type of tasks performed) for worker sorting in the
U.S. labor market. In our case, we posit that, for in-
ventors, an important amenity is given by innovation
output. Specifically, our theoretical model considers

a worker utility function with two inputs: wage and
innovation output.

6.2. The Model
In this section, we develop a theoretical framework to
formally illustrate how the presence of inventors’
taste for amenities, specifically innovation output,
may yield the surprising pattern of negative assor-
tative matching between innovating firms and workers
suggested by the data. Accordingly, we focus primarily
on this feature and then extend the framework to address
inventor-inventor matching as well.
Similar to our empirical section, an inventor’s in-

novation function is given by

log (y) � α + φ, (4)

where y, as before, is the number of patents of an
individual inventor-firm pair, α an indicator of the
inventor’s ability, and φ a measure of the firm’s in-
novation strength. The inventor’s utility function, in
turn, is given by

u � w + f (y), (5)

where w is wage earnings. We assume that f (y) can
be written as f (y) � g(log(y)) and that g′ (y)> 0 and
g′′ (y)< 0, that is, the inventor’s utility is increasing
and concave in the inventor’s output and themarginal
utility of innovation output y declines at a faster rate
than 1/y2. This is not an innocuous assumption. In
fact, it drives much of the results that follow. That
said, we believe that Equation (5) describes well the
reality of inventor motivation. First, in addition to
monetary compensation, inventors care about the
result of their efforts. Thismay result from self-esteem
considerations, career concerns, or other factors. Sec-
ond, consistent with standard models of agent pref-
erences, we posit that the inventor’s marginal utility
from innovation is decreasing: an extra patent matters
a lot more for an inventor with a low number of patents
than for an inventor with a large number of patents
under her belt.10 We do, moreover, make the stronger
assumption that the marginal utility of innovation
declines at a fast rate (specifically, faster than the loga-
rithm function).
The simplest model that is complex enough to

address the issue of matching between inventors and
firms is a model with two firms of different type and
two inventors of different type (at the end of the
section we consider a variety of extensions).
Specifically, we assume that one of the inventors is

type αL and the other αH. Similarly, one of the firms is
type φL and the other φH. αL and αH correspond, re-
spectively, to low-human capital and high-human
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capital inventors. Similarly, φL and φH correspond to
firms with low and high firm-specific innovation
specific capabilities, respectively.

We assume the firm’s profit function is given by

π � log(y) − w. (6)

Similarly to the inventor utility function, the as-
sumption that firm profits are convex in y can be
understood as a reflection of decreasing marginal
product.11 For example, suppose that the firm is
trying to solve a specific problem (e.g., to cure a
disease) and that revenues are proportional to the
probability of achieving that goal. Suppose moreover
that each patent corresponds to a try at solving the
problem. If these tries are independent draws, then
the probability of achieving the desired goal is given
by h (y) � 1 − (1 − ρ)y, where ρ is the probability that a
patent leads to a solution to the problem. As can be
seen, h (y) is a concave function of y.12 To conclude the
model’s description, we assume that a firm can hire
only one worker.13

The process ofmatchingfirmswithworkers, aswell
as the process of wage setting, can be complex and
highly idiosyncratic when the worker is an inventor.
In other words, many of these inventors are superstars
who are paid a negotiatedwage rather than aw from a
salary scale. Given the complexity of the process, it
makes sense to analyze the problem as a coalitional or
cooperative game. The terms coalitional and coopera-
tive, common as they may be in the literature, are
probably not as appropriate as protocol free, which
better describes the idea: instead of assuming a specific
extensive form (i.e., rigid rules regardingwho doeswhat
andwhen in the game),we simply address the identity of
who does business with whom (matches) and what
payoff they get (more specifically, bounds on what their
payoffs are). Specifically, following a common approach
in this type of problemswe look for the core of the game
in question.

Definition 1. The core of the firm-inventor matching game
is a set of matches and payoff values such that no firm-inventor
pair can increase their payoffs by forming a deviating coalition.

We are now ready to present our central theoreti-
cal result.

Proposition 1. The core of the firm-inventor matching
game includes a unique element. It is characterized by
negative assortative matching, that is, a low-type inventor is
matched with a high-type firm and vice-versa.

The proofs of our theoretical results are presented
inOnlineAppendixC.14Atfirst, the resultmay seema
little counterintuitive. One might expect the high-
type firm to be matched with the high-type inven-
tor. However, the equilibrium is not determined by
the maximization of the surplus of any particular

match—as theHHmatchwould be—but rather by the
maximization of the sum of surplus levels over all
matches. In the present case, themaximum joint value
of a particular match corresponds to the high-type
inventor working at a low-type firm.
To understand the intuition for Proposition 1, note

that, although the innovation function is supermodular,
the inventor’s utility function is very concave (i.e., the
inventor’smarginal utility of innovation is decreasing
at a high rate). This implies that the match function is
submodular and that maximizing total value calls for
negative assortative matching. In fact, a boost in in-
novation is worth a lot more for a low-type inventor
than it is for a high-type inventor, and a high-type
firm provides that boost better than a low-type firm.
In general, the core does not indicate the exact

equilibrium payoff received by each player. How-
ever, it does provide bounds on the payoff received by
each player. In the present context, we are able to
prove the following result regarding equilibrium
inventor wages.

Proposition 2. The wage paid by the low-type firm, wL, is
greater than the wage paid by the high-type firm, wH.

Together, Propositions 1 and 2 suggest that in-
ventors trade off innovation andwage (the two inputs
into their utility function) when they choose what
firm towork for. At the high-type firm, inventors get a
bigger boost to their innovation output but receive a
lower wage. By contrast, at the low-type firm, in-
ventors get a lower boost to their innovation output
but receive a higher wage. Note that Proposition 2
does not exactly imply the tradeoff just described
because wL, for example, is the wage paid by a low-
type firm to a high-type inventor and not to a low-
type inventor. However, this intuition stands.

6.3. Model Extensions
One natural extension of this model is to consider
an arbitrary number of firms, n> 2. If we keep the
number of inventors at n too, then the extension is
relatively straightforward. That said, we do not think
there is really any additional intuition gained by
analyzing the n firm case in this way.
A more relevant extension would be to allow for

more inventors than firms. This possibility opens the
question of sorting among inventors. The simplest
case is when there are two firms of different type, as
before, but now four inventors, two of each type. And
we assume that a firm operates with exactly two in-
ventors. If innovation functions are additive in in-
ventor outputs, and if inventor utility is the same as
in Equation (5), then it is straightforward to show that
the core corresponds to low-type inventors working
for the high-type firm and high-type inventors working
for the low-type firm, just as in Proposition 1. The idea
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is that, because the profit function is additive in in-
ventor output, the problems of matching each of the
inventors are separable. In other words, Proposition 1
applies to each of the inventors in eachfirm. The result
of this multi-inventor matching game is that, in equi-
librium, we observe positive assortative matching
among inventors. However, this PAM is a result of the
NAM between inventors and firms.

7. Concluding Thoughts
In this paper, we establish that inventor-specific skills
are 5–10 times more important than firm-specific
capabilities for explaining the variance in the inven-
tive performance of inventors. The relatively small
effect of firm-specific capabilities, which include ca-
pabilities such as corporate culture and organiza-
tional routines, and take several years to build, may
explain why several decades of research has not
uncovered a clear advantage for established firms in
innovation. Our findings make the case for a more
central role for human capital in theories of the firm
and studies of competitive advantage.

We also study thematching of inventors to employers—
a topic of central importance for labor economists
and human resource management. We find that high
human capital inventors match with firms that (i) have
weak firm-specific invention capabilities and (ii) em-
ploy other talented inventors. Our theoretical analy-
sis rationalizes these empirical patterns by incorpo-
rating preferences for innovation outputs into workers’
utility function. This analysis also suggests that firms
can seek to enhance their competitive advantage ei-
ther by employing inventors with lower human capital
and contributing to their innovativeness (through firm
capabilities) or by serving as a platform for highly tal-
ented, but expensive, workers.

Of course, our analysis has several limitations.
First, we use a specific measure of innovation based
on patent counts—indeed not all inventors and firms
have the same propensity to patent their inventions.
Second, our AKM analyses explain around 44% of the
variation in innovation output, leaving a significant
role for unobserved inventor-firm-year specific idi-
osyncratic factors. These factors could include, for
example, job-fit, learning, and experience (both in-
dividual and firm-level), and changes in firm-level
patenting policies, legal personnel, or leadership.
Although well suited to account for unobserved in-
ventor and firm heterogeneity, the standard AKM
cannot be leveraged to examine complementarities in
innovation arising from interactions between worker
and firm attributes. Third, the AKMmodel is static, in
the sense that it does not take into account worker
mobility’s likely dependence on innovation perfor-
mance (Bonhomme et al. 2019). We address this
limitation in multiple ways described in Sections 4

and 5 by using the rollingwindow technique and tests
to rule out different types of biases. These methods
allow us to partially, but not perfectly, deal with time-
varying omitted variables such as firm leadership or
governance that may influence inventor output and
firm capability and matching. Fourth, our analyses
establish the importance of inventor-specific ability
for explaining variance in innovation performance,
but we do not know what drives the fixed effects.
Inventor fixed effects likely subsume the influences
of a variety of intrinsic traits (e.g., innate ability and
persistence) and acquired experiences (e.g., educa-
tion). Fifth, working at a firm may have a persistent
effect on inventors’ human capital that may be in-
accurately attributed to the worker. Unpacking and
identifying changes in firm capabilities and the in-
gredients of human capital presents promising ave-
nues for future research.
Finally, although overall human capital appears

more important than firm capabilities in explaining
variance in inventor productivity, firms can improve
their innovation output by investing in capabilities.
Our results leave open the question of whether firms
can improve their overall innovation performance
through a strategy that builds firm capabilities or
focusses on hiring and retaining top inventors. The
answer to the question is likely to depend on the
relative costs of innovation inputs.
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Endnotes
1 Specifically, we assume that the innovation rate y is an exponential
function of α + φ, where α is the inventor’s type and φ is the firm’s
type. This implies that the cross–partial derivative of y with respect to α

andφ is positive, so the innovation function is supermodular in its inputs.
2This, per se, would not suffice for submodularity. However, we
effectively assume that the inventor’s utility function is more concave
than the firm’s payoff function is convex.
3We exclude from AKM analyses observations not part of the largest
connected network (about 1%) because there is no basis to normalize

Bhaskarabhatla et al.: Are Inventors or Firms the Engines of Innovation?
Management Science, 2021, vol. 67, no. 6, pp. 3899–3920, © 2020 INFORMS3918



the estimated fixed effects to a reference firm or inventor across
unconnected networks.
4Because themodel explains 44.7% of the overall variation in inventor
performance, inventor heterogeneity and firm heterogeneity account
for 76% (34.1/44.7) and 7% (3.2/44.7) of the variance explained by our
model, respectively. See Cornelissen (2008), p.183, for more discus-
sion on the interpretation of these numbers.
5Online Appendix A, Table A2, also reports pairwise correlation
coefficients among inventor- and firm-fixed effects obtained from the
different estimations described above. The coefficients are all higher
than 0.77, suggesting the robustness of our findings to the different
specifications and samples.
6We construct these and all further bootstrapped standard errors by
re-estimating the entire 5-year and 10-year rollingwindow procedure
100 times with replacement. See table notes for more details.
7 See Online Appendix A, Table A5, for the full estimation results.
8As noted in Section 4.1, the presence of match dynamics among
firms and inventors run counter to the assumption of our baseline
AKM that firm and inventor types are constant through the sam-
ple. We examine whether the mobility/matching results obtained
through the rolling window procedure (reported in Table 4) differ
from mobility/matching results obtained from the baseline AKM
estimates that are time invariant (column (1) of Table 3). The esti-
mates, shown in Online Appendix A, Table A6, confirm our findings
of PAM among inventors and coinventors and NAM between in-
ventors and firms obtained from the rolling window analyses. The
effect sizes pertaining to inventors-firmmatching (i.e., NAM) are very
close to those obtained through the rolling window estimation, and
those pertaining to coinventor matching (i.e., PAM) are stronger
when we do not use rolling windows.
9The distributions for our three samples, depicted in Online Ap-
pendix A, Figure A1, show that the variance approximation is indeed
very close to 1 for all but the highest deciles of the distribution.
10A similar consideration applies to academic publications as well.
11We could also place a coefficient in front of log(y) to compare units
of y to units of w. However, the qualitative nature of our results
would not change.
12Although this does not correspond precisely to a log function, the
assumption of independence across draws is also unlikely to hold.
13We could explicitly model this in the form of decreasing returns to
scale but that would unnecessarily complicate the analysis. That said,
some assumption is required to avoid the outcome of one large firm
that hires all of the inventors in the economy.
14The proof of Proposition 1 basically adapts features of results in
Gale and Shapley (1962) and Becker (1973). In other words, there is
nothing novel about Proposition 1 other than a slightly different proof
strategy and the fact that we derive the result in the specific context
of a firm-inventor game, that is, with a particular set of players and
payoff functions. Moreover, although most of the literature has fo-
cused on super-modular payoff functions and positive assortative
matching, Proposition 1 deals with negative assortative matching.
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