

Overview

- Context: Many firms face a tradeoff between price and quantity. To sell more, they must charge less. What price should they set? Should they simply apply a standard markup to cost?
- Concepts: demand elasticity, marginal revenue, marginal cost, elasticity rule, market power.
- Bottom line: optimal price is a trade-off between margin and quantity sold, as given by the *elasticity rune:*

$$p = \frac{MC}{1 + \frac{1}{\epsilon}}$$

Example: Ice-cream pricing

Ice-cream pricing

- Ice-cream truck: driver/operator rents truck, buys ice-cream rom factory, keeps all of the profits
- Fixed cost (truck rental): \$15/hour
- Marginal cost (wholesale cost of ice-cream): \$3
- inverse demand (per hour): p = 10 0.5 q (see table on next page)
- What price generates the most profit?

Ice-cream pricing

price	demand	revenue	total cost	increm. revenue	increm. cost	profit
10.0	0.0	0.0	15.0			-15.0
9.5	1.0	9.5	18.0	9.5	3.0	-8.5
9.0	2.0	18.0	21.0	8.5	3.0	-3.0
8.5	3.0	25.5	24.0	7.5	3.0	1.5
8.0	4.0	32.0	27.0	6.5	3.0	5.0
7.5	5.0	37.5	30.0	5.5	3.0	7.5
7.0	6.0	42.0	33.0	4.5	3.0	9.0
6.5	7.0	45.5	36.0	3.5	3.0	9.5
6.0	8.0	48.0	39.0	2.5	3.0	9.0
5.5	9.0	49.5	42.0	1.5	3.0	7.5
5.0	10.0	50.0	45.0	0.5	3.0	5.0
4.5	11.0	49.5	48.0	-0.5	3.0	1.5

Optimal pricing: calculus

- Since there is a one-to-one correspondence between price and demand (the demand curve), we can either determine optimal price or optimal output
- Profit is normally an inverted-U-shaped function of output
- If slope is positive, then higher output lads to higher profit
- If slope is negative, then lower output leads to higher profit
- At the optimal output level, derivative of profit with respect to output is zero. This is a necessary (though not sufficient) condition

Profit maximization

Profit maximization: calculus

• Profit and marginal profit:

$$\pi(q) \equiv R(q) - C(q)$$

$$\frac{d\pi(q)}{dq} = \frac{dR(q)}{dq} - \frac{dC(q)}{dq}$$

• Marginal revenue:
$$MR \equiv \frac{d R(q)}{d q}$$

• Marginal cost:
$$MC \equiv \frac{d C(q)}{d q}$$

• Profit maximization implies that $\frac{d \pi(q)}{d q} = 0$, which is equivalent to

$$MR = MC$$

Notes on marginal revenue

- What do you get from selling an extra unit? You get the price for which you sell it, but the additional (marginal) revenue is less than that.
- Price must be lowered in order for an extra unit to be sold; this lowers the marginal on all units sold.
- Formally,

$$MR \equiv rac{d\,R}{d\,q} = rac{d\,(p imes q)}{d\,q} = p + rac{d\,p}{d\,q}\,q < p$$

The elasticity rule

$$MR = p + \frac{dp}{dq} q = p + \frac{dp}{dq} \frac{q}{p} p = p + \frac{1}{\frac{dq}{dp} \frac{p}{q}} p = p \left(1 + \frac{1}{\epsilon}\right)$$

Therefore, MR = MC implies that $p\left(1 + rac{1}{\epsilon}\right) = MC$, or

$$p=rac{MC}{1+rac{1}{\epsilon}}$$

Alternatively, this may be written as $p - MC = -p \ rac{1}{\epsilon}$, or simply

$$m \equiv \frac{p - MC}{p} = \frac{1}{-\epsilon}$$

Demand elasticity and monopoly margin

Demand elasticity and monopoly margin

Margin and markup

• Two alternative ways of measuring gap between price and marginal cost:

$$m \equiv \frac{p - MC}{p}$$
$$k \equiv \frac{p - MC}{MC}$$

• Corresponding elasticity rules:

$$m = \frac{1}{-\epsilon}$$
$$k = \frac{1}{-\epsilon - 1}$$

Example

- Product: new drug, protected by patent
- Estimated elasticity: -1.5 (constant)
- Marginal cost: \$10 (for a 12-dose package)
- What's the profit maximizing price?
- What are values of margin, markup at optimal price?
- Check elasticity rules

Ice-cream pricing (reprise)

- Recall that F = 15, MC = 3, p = 10 0.5 q
- Elasticity is not constant, so elasticity rule is not very useful
- Apply $d\pi(q)/dq = 0$ directly (or MR = MC):

$$\pi(q) = \left(10 - \frac{1}{2} q\right) q - 3 q - 15$$
$$\frac{d\pi}{dq} = -\frac{1}{2} q + \left(10 - \frac{1}{2} q\right) - 3$$

$$\frac{d\pi}{dq} = 0 \quad \Rightarrow \quad q = 7$$
$$\Rightarrow \quad p = 10 - \frac{1}{2} \ q = 6.5$$

Ice-cream pricing (reprise)

 We didn't use the elasticity rule to find p*, but nevertheless elasticity rule holds at p = p*

$$\frac{1}{-\epsilon} = -\frac{dp}{dq} \frac{q}{p} = \frac{1}{2} \frac{7}{6.5} = .5385$$
$$m = \frac{p - MC}{p} = \frac{6.5 - 3}{6.5} = .5385$$

Optimal pricing: graphical derivation

Optimal pricing: graphical intuition

Comments on elasticity rule

- Standard markup is a bad idea: you want higher markups for products with lower elasticities
- If $|\epsilon| < 1$, always better off by increasing price
- Every firm is a "monopolist," but the extent of its monopoly power is given by $1/|\,\epsilon\,|$
- Question: "what will the market bear?" Answer: $MC / \left(1 + \frac{1}{\epsilon}\right)$
- If a firm sells multiple products, some complications may arise. More on this below

Complications, I: demand interactions

- What if firm sells two products that are related?
- Examples:
 - Substitutes (e.g., Unilever)
 - Complements (e.g., Gillette)
 - Bundles (e.g., supermarkets)
- How does this influence optimal pricing strategy?

Complications, II: dynamic interactions

- What if firm sells a product over a number of periods?
- Examples:
 - Buz effects (e.g., movies)
 - Network effects (e.g. social networks)
 - Habituation effects (e.g., videogames, cigarettes)
 - How does this influence optimal pricing strategy?

Takeaways

- Optimal price depends on:
 - marginal cost
 - what the market will bear (demand elasticity)
- In a competitive market (high $|\epsilon|$), optimal markup is low. If your product has unique characteristics and/or you're the only producer (low $|\epsilon|$), then optimal markup can be high.
- If you sell various related products, then optimal pricing becomes more complicated
- What's missing:
 - more complex pricing schemes (Chapter 6)
 - competition (Chapters 8 and 9)